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Abstract: This study developed a zygomaticomaxillary complex (ZMC) patient-specific repairing
thin (PSRT) implant based on the buttress theory by integrating topology optimization and finite
element (FE) analysis. An intact facial skeletal (IFS) model was constructed to perform topology
optimization to obtain a hollow skeleton (HS) model with the structure and volume optimized.
The PSRT implant was designed based on the HS contour which represented similar trends as vertical
buttress pillars. A biomechanical analysis was performed on a ZMC fracture fixation with the PSRT
implant and two traditional mini-plates under uniform axial loads applied on posterior teeth with
250 N. Results indicated that the variation in maximum bone stress and model volume between the
IFS and HS models was 15.4% and 75.1%, respectively. Small stress variations between the IFS model
and repairing with a PSRT implant (2.75–26.78%) were found for compressive stress at frontal process
and tensile stress at the zygomatic process. Comparatively, large stress variations (30.67–96.26%) with
different distributions between the IFS model and mini-plate models were found at the corresponding
areas. This study concluded that the main structure/contour design of the ZMC repair implant
according to the buttress position and orientation can obtain a favorable mechanical behavior.

Keywords: bony supporting; patient matched; 3D printing; topology optimization; finite
element method

1. Introduction

The objectives of repairing zygomaticomaxillary complex (ZMC) fractures involve stabilization
and rehabilitation for craniofacial diseases [1–3]. Titanium implants (mini-plates) that were usually
used to obtain superior realignment is the clinical standard treatment procedure in surgical repair [4–6],
but the traditional mini-plate provides a fixation function only to the resting bone, but the mid-face
stability after surgery is not considered, which may lead to plate deformation or screw loosening,
making an asymmetrical mid-face appearance. Understanding the stress/strain biomechanical behavior
of the ZMC fracture, the repaired and healing facial skeleton is relevant to the design of fixation
implants [7]. However, there is still no consensus on the optimization strategy for designing an
internal fixation implant for ZMC fractures. The repair stability of ZMC fractures remains controversial,
because the fixation of fractures may not require maximum rigidity or strength to achieve reliable bone
healing [7,8]. However, proponents of single plate implants believe that decreasing the number of
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plates provides another way to decrease morbidity [8]. Therefore, a better conception of the ZMC
fracture repair biomechanics is important for improving internal fixation implant design [9].

The design of bone implants for ZMC fractures must reflect the basic biomechanical foundation of
bone stability [10,11]. The buttresses are composed of a thick cortical bone to protect the face against
external assaults and to take shape of horizontal and vertical pillars in the mid-facial bones, providing
anchor points for various plates and fixtures, and playing a fundamental role in facial aesthetics
through their influence on facial width and projection [7]. Occlusal forces generated during biting or
mastication are transmitted by the zygomatic process zygomaticoalveolar crest onto the maxilla up to
the zygomatic bone by three vertical buttresses, i.e., the nasomaxillary, zygomaticomaxillary, and the
pterygomaxillary buttresses. Other horizontal buttresses stabilize the vertical buttresses mechanically
by interconnecting them at different levels [2]. The distribution of facial skeleton buttresses is an
important consideration for the design of fracture repairing implants, and accepts anchor points for
plates and screws [12].

Integrating computer aided design (CAD) with 3D printing (additive manufacturing) techniques
can predesign and fabricate internal fixation implants for repairing ZMC fractures using patient-specific
appearance and functional requirements [13,14]. Metal 3D printing patient-specific implants increase
the interfacial fit adaption between the reconstruction plate and bone, while servicing thin implants
for reduction and fixation. However, the large volume of titanium implants may cause a significant
stress shielding effect, which leads to bone resorption [14]. Traditionally, clinical requirements
for the ZMC fracture involved resting bone restoration and fixation using a mini-plate after the
mid-face reconstruction surgery. However, geometric restoration demands, lightweight structure,
and primary stability are increased in the current mid-face fracture treatment protocol. A potential
repair ZMC implant design can combine with the topology optimization to suggest the best structural
profile to achieve clinical requirement [14–17]. The topology optimization is a numerical method
usually integrated with the finite element (FE) analysis for use to optimize the design of structural
objects [18]. The occlusal forces were transmitted upward through the nasomaxillary buttress and
zygomaticomaxillary buttress to the mid-face. The main supporting structures are found on the
mid-face of the intact bone with bone thickness expressed after performing the topology optimization.
If the bone plate was designed according to the mid-face main supporting structure, it could replace the
intact bone to support and transmit the occlusal forces in the mid-face. This useful tool has been widely
used in biomechanical design to optimize the structure of orthopedics and craniofacial implants [14,16].

Considering the fundamental buttress biomechanical basis for skeletal stabilization and designing
the ZMC patient-specific repairing thin implant repair based on the optimization structure is necessary
(denoted as the PSRT implant). The PSRT implant is essential to maximize the buttress function for
force transfer and anchor, while maintaining proper strength to restore patient appearance and the
necessary degrees of stabilization for bone healing. The objective of this study was to develop a ZMC
PSRT implant based on the buttress theory by integrating topology optimization and FE analysis.
The biomechanical analysis was also performed to understand the stress difference for the ZMC fracture
repair with the PSRT implant and traditional straight mini-plates.

2. Material and Methods

2.1. FE Model Construction and Topology Optimizations

The computed tomography (CT) scan images were used to construct a left ZMC comminuted
fracture solid model (denoted as the ZMC model) by converting bone contours at different cross-sections
in the CAD system (Figure 1a). In order to understand the mechanical behavior for the intact facial
skeletal, the left ZMC comminuted fracture was deleted and the right intact part was mirrored to
generate a complete intact facial skeletal model (denoted as the IFS model) (Figure 1b).
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Figure 1. Three-dimensional (3D) reconstruction model of the (a) zygomaticomaxillary complex (ZMC)
fracture; (b) the right intact part of the ZMC model; (c) a whole intact facial skeletal model (denoted as
the IFS model).

The IFS models were exported in the ANSYS Workbench (v19.0, ANSYS Inc., PA, USA) for
simulation. The tetrahedral structural elements were used to generate the FE model after mesh
convergence tests [19]. Linear elastic material properties that included elastic modulus and Poisson’s
ratio values were 13,700 MPa/0.3 for cortical and 1370 MPa/0.3 for cancellous bones, respectively [9].
Uniform axial loads were applied on posterior teeth (premolars and molars) with a total of 250 N as
the load conditions. The boundary condition was set as exterior nodes on the frontal and temporal
bone segment to fix in all directions (Figure 1c).

The topology optimization modulus in the ANSYS was used to optimize the structure and to
reduce the volume of the IFS model. To minimize the IFS model, the volume was defined as the
objective function and the following equation was performed:{

min V = F(ρe)

s.t σe ≤ σ

V is the volume of design structure, ρe is the design variable, σe is the von-Mise stress in each
element, and σ is the maximum allowable stress. min V = F(ρe) is the objective function. This function
represents the volume (V) that is being minimized for best performance. s.t σe ≤ σ is the characteristic
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that the solution needs to be satisfied. The element whose stress is below the minimum allowable
stress can be removed.

The Von Mise stress value of 20 MPa was setup as the minimum allowable stress and each element
whose stress was below it was removed to generate a hollow skeleton model (denoted as HS) using the
model smoothing procedure (Figure 2).
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Figure 2. (a) The hollow skeleton model with jagged appearance obtained from the topology
optimization process; (b) model smoothing to refine the jagged boundary profile and generate
the optimal structure mesh model with a hollow skeletal (denoted as HS) construction.

2.2. Buttress Theory Verification by the FE Analysis

Buttress theory: The supporting facial bony structure can be classified as vertical and horizontal
buttresses. The vertical buttresses consist of the paired nasomaxillary (NM) and zygomaticomaxillary
(ZM) buttress which can provide the bony support required for mastication and protect the surrounding
thin bone [20].

The HS model hollow skeleton structure represents the necessary structure to be retained after IFS
model optimization. The other volumes removed are those where the stress value is low and does not
need to exist. In order to verify the buttress theory, the same load and boundary conditions from the
previous setting were applied on the HS model to compare the variations in mechanical responses
between the IFS and HS models (Figure 2a,b).

2.3. Design of ZMC Patient-Specific Repairing Thin Implant (PSRT Implant)

The HS model obtained from the topology optimization is the supporting structure for sharing
the stress distribution and, moreover, the HS structure profile presented a trend similar to the
buttress pillars.

The outer contour of the PSRT implant was designed as a closed loop along the frontal process,
infraorbital rim, zygomatic process, alveolar bone, and back to frontal process (Figure 3a). Four small
closed inner contours were also generated according to the remaining skeletal structure. Since the
infraorbital foramen nerve position and the surgical approach needed to be considered together during
the surgical operation, the top three inner closed loops were integrated and the entire thin implant was
designed as upper and lower halves using an embedded combination. Six screw holes were designed
at the PSRT implant surrounding boundary and can be fixed onto the anatomy’s thicker cortical rims
(Figure 3b). The main mid-face supporting structure from the HS model was obtained as the design
criteria for the PSRT implant design, so that the PRST implant with a lightweight structure could
restore the mechanical performance and increase mid-face stability.
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Figure 3. (a) The patient-specific repairing thin (PSRT) implant contour was generated along the frontal
process, infraorbital rim, zygomatic process, alveolar bone, and back to the frontal process. The top
three inner closed loops were integrated; (b) a thin implant was designed as the upper and lower
halves by an embedded combination. Six screw holes were designed at the PSRT implant surrounding
boundary and can be fixed on the anatomy thicker cortical rims.

2.4. ZMC Fracture Model for the FE Analysis

Two ZMC comminuted fracture solid models, including fixation with the PSRT implant by six
screws surrounding the implant and two traditional mini-plates at the upper and lower parts between
the remaining infraorbital rim and zygomatic process bone parts were constructed in the ANSYS.
A patient-matched bending thin plate was used in both models to increase the interfacial fit between
the plate and orbital wall for repairing an orbital floor fracture (Figure 4) [17]. The stress values of
1~6 points were extracted from the HS model and compared with the IFS model, the variation between
the two groups was found to be 0.16%~11.42%, indicating that the stress distribution of the HS model
is similar to the IFS model. After a convergence test with different element sizes [19], FE mesh models
were obtained by a smart mesh with quadratic ten-node tetrahedral elements. Nonlinear contact
elements with a 0.5 friction coefficient were employed to mimic the interfacial conditions between all
screw heads and thin implant/mini-plates in all models (Figure 5) [1,18]. The contact setting between the
screw and bone was assumed bonded. Element and node numbers for the patient-specific repair model
are 243,615 and 236,605 for the PRST model, and 378,786 and 364,442 for the traditional mini-plate
model. Elastic modulus/Poisson’s ratio values for titanium alloy for a thin implant/mini-plate were
adopted from the literature [1,19,21], i.e., 110 GPa and 0.3, respectively. The same loading and boundary
condition in previous topology optimizations were setup for biomechanical analysis. The maximum
and minimum principal stresses for the IFS model and ZMC fracture repair with thin implant/mini-plate
models and among variations were recorded.
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Figure 4. The facial skeletal ZMC comminuted fracture fixation with (a) the PSRT implant by six screws
surrounding the implant and (b) two traditional mini-plates at upper and lower parts between the
remaining part of the infraorbital rim and zygomatic process bone were constructed. A patient-matched
bending thin plate was used in both models for repairing the orbital floor fracture. Uniform multiple
axial loads with a total of 250 N were applied on premolars and molars as the load condition.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 12 

 

Figure 4. The facial skeletal ZMC comminuted fracture fixation with (a) the PSRT implant by six 

screws surrounding the implant and (b) two traditional mini-plates at upper and lower parts between 

the remaining part of the infraorbital rim and zygomatic process bone were constructed. A patient-

matched bending thin plate was used in both models for repairing the orbital floor fracture. Uniform 

multiple axial loads with a total of 250 N were applied on premolars and molars as the load condition. 

 

Figure 5. Finite analysis (FE) mesh models with element/node numbers and interfacial setting 

conditions for facial skeletal ZMC comminuted fracture fixation with (a) the PSRT implant by six 

Figure 5. Finite analysis (FE) mesh models with element/node numbers and interfacial setting
conditions for facial skeletal ZMC comminuted fracture fixation with (a) the PSRT implant by six screws
surrounding the implant and (b) two traditional mini-plates at upper and lower parts between the
remaining part of the infraorbital rim and zygomatic process bone were constructed.
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3. Results

The resulting optimal profile of the IFS FE model showed that unnecessary elements were
removed under a stress constrain condition and a HS model was generated with jagged appearance
to optimize/reduce the structural volume (Figure 2a,b). The HS model structure and high stress
regions represented trends similar to the buttress pillars of the nasomaxillary and zygomaticomaxillary
buttresses (Figure 6). The variation in maximum bone stress (maximum principal stress) and solid
volume between the IFS and HS models was 18.3% and 75.1%, respectively (Table 1).
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Figure 6. The stress distribution of the IFS model and HS model, (a) and (b) stress distributions of the
IFS and HS models, respectively. High stress regions represented a similar trend as buttress pillars of
the nasomaxillary and the zygomaticomaxillary buttresses.

Table 1. The variation of maximum bone stress (maximum principal stress) and solid volume between
the IFS and HS models.

Topology Optimization Volume (mm3) Max. 1st Principal stress (MPa)

IFS model 112,890 22.37
HS model 28,093 26.46
variation (%) 75.1% 18.3%

The stress variations of 1~6 points between the HS model and IFS model

1 2 3 4 5 6

Unit: MPa Compression
(minimum principal stress)

Tensile
(maximum principal
stress)

Intact model
(IFS model) −6.26 −3.13 −4.73 5.62 6.87 4.32

HS model −6.25 −3.21 −4.19 5.14 6.41 4.31
Variation (%) 0.16% 2.56% 11.42% 8.54% 6.70% 0.23%
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Since the load condition was applied to the vertical force on premolars and molars, it produced a
counterclockwise bending moment on the maxillary and zygomatic bones. Points 1, 2, and 3 located at
the lower, middle, and upper of the frontal process received compressive stress; the minimum principal
stresses (3rd minimum principal stress) on these points were denoted to indicate the magnitude of
compressive stresses. The maximum principal stresses (1st maximum principal stress) were denoted
to present the tensile stress values of points 4, 5, and 6 located at the lower, middle, upper of the
zygomatic process, respectively. Table 2 showed the bone stress values corresponding to points 1 to 6.
Figure 7 shows a comparison of the maximum/minimum bone stress values among the IFS model; the
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ZMC fracture repair with thin implant and traditional mini-plates. The difference between the values
should be expressed as a percentage, as shown in Figure 6. Since the frontal process was subjected
to compressive stress, the stress value at the 1st to 3rd point on each model was compared with the
minimum principal stress, while the tensile stress was applied to the zygomatic process, so the stress
value at the 4th to 6th point was compared with the maximum principal stress. A similar stress pattern
occurred between the IFS model and repair with the PSRT implant, i.e., convex curves were found
while connecting the maximum stress value from points 1 to 3 and points 4 to 6. However, a different
corresponding curve trend was found for the repair with mini-plates from points 1 to 3. The percentage
of stress variations between the IFS and PSRT implant models was from 2.75% to 26.78%, which was
much smaller than the corresponding variations from 30.67% to 96.26% between the IFS model and
mini-plate models (Figure 7). Figure 8 presents the intact skeleton bone stress distribution, the ZMC
fracture repair with the PSRT implant and traditional mini-plates. The results showed that high
compressive stress patterns were found at the upper frontal process (near point 3) regardless of the
IFS, PRST or mini-plate models, and high tensile stress patterns. Figures 7 and 8 should be compared
together. It is difficult to observe the stress distribution of the three-dimensional structure by just using
the stress distribution in Figure 8. Figure 8 shows that the PSRT model has a similar stress trend as the
IFS model, which means the mid-face will have high stability with the PSRT implant reconstruction.

Table 2. Stress values of the bone corresponding to the points 1 to 6 positions.

Fracture Side

1 2 3 4 5 6
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process was subjected to compressive stress, the stress value at the 1st to 3rd point on each model 

was compared with the minimum principal stress, while the tensile stress was applied to the 

zygomatic process, so the stress value at the 4th to 6th point was compared with the maximum 

principal stress. A similar stress pattern occurred between the IFS model and repair with the PSRT 

implant, i.e., convex curves were found while connecting the maximum stress value from points 1 to 

3 and points 4 to 6. However, a different corresponding curve trend was found for the repair with 

mini-plates from points 1 to 3. The percentage of stress variations between the IFS and PSRT implant 

models was from 2.75% to 26.78%, which was much smaller than the corresponding variations from 

30.67% to 96.26% between the IFS model and mini-plate models (Figure 7). Figure 8 presents the intact 

skeleton bone stress distribution, the ZMC fracture repair with the PSRT implant and traditional 

mini-plates. The results showed that high compressive stress patterns were found at the upper frontal 

process (near point 3) regardless of the IFS, PRST or mini-plate models, and high tensile stress 

patterns. Figure 8 and Figure 7 should be compared together. It is difficult to observe the stress 

distribution of the three-dimensional structure by just using the stress distribution in Figure 8. Figure 

8 shows that the PSRT model has a similar stress trend as the IFS model, which means the mid-face 

will have high stability with the PSRT implant reconstruction. 

In order to simulate the actual clinical reconstruction situation, the orbital plate was used on the 

PSRT model and the mini-plate model. The orbital plate did not affect the overall stress distribution 

trend of the PSRT model and mini-plate model, so the stress distribution of the orbital plate was not 

presented in the results. 

Table 2. Stress values of the bone corresponding to the points 1 to 6 positions. 

Fracture Side 

1 2 3 4 5 6 

Unit: MPa 

Compression 

(minimum principal 

stress) 

Tensile 

(maximum principal 

stress) 

Intact model 

(IFS model) 
6.26 3.13 4.73 5.62 6.87 4.32 

PSRT 

implant 
5.75 3.79 4.60 5.13 5.03 3.23 

Mini-plate 4.34 7.21 2.09 0.21 0.59 0.63 

Unit: MPa Compression
(minimum principal stress)

Tensile
(maximum principal
stress)

Intact
model
(IFS
model)

6.26 3.13 4.73 5.62 6.87 4.32

PSRT
implant 5.75 3.79 4.60 5.13 5.03 3.23

Mini-plate 4.34 7.21 2.09 0.21 0.59 0.63

In order to simulate the actual clinical reconstruction situation, the orbital plate was used on the
PSRT model and the mini-plate model. The orbital plate did not affect the overall stress distribution
trend of the PSRT model and mini-plate model, so the stress distribution of the orbital plate was not
presented in the results.
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4. Discussion

The patient-specific 3D printing fixation implant values applied in plastic surgery or mid-face
repair are greatly improved because the implant geometry profile provided an adaptive interfacial
fitness, both the positioning and fixation functions for the resting bone. However, patient-specific 3D
printing implants must be well designed according to the patient’s condition before surgery. However,
there is currently no design criterion for applying 3D-printing technology to ZMC fracture repairs.
According to the literature and biomechanical principles [2,3,7], the fixation implant needs to be
designed as a thin plate, which should not be too rigid to produce a stress-shielding effect. Nor can it be
too soft to induce repair instability, and must restore the intact bone mechanical function, i.e., buttress
pillars in the mid-facial bones. This is the reason why topology optimization was combined with
the FE analysis in the IFS model to verify the generated optimized structure (HS) model as feasible
for representing the buttress. The PSRT implant was then designed according to the skeleton of the
optimized structure (HS) model.

The topology optimization is a design tool that can arrange a specified number of materials on a
given design domain for giving loads, boundary conditions, and constraints to minimize the scalar
objective function. This optimization algorithm was combined with the FE analysis in this study
to identify optimal structures removing elements whose stress value was less than the constraint
value [17]. The objective function was defined to minimize the volume of the intact skeletal structure.

The topology optimization result for the IFS model obtained a HS model with a hollow skeleton
structure. The stress pattern that was found through the mid-facial skeleton had similar specific
osseous trajectories as the buttresses by occlusal forces. High stress distributions were found at the
nasomaxillary and zygomaticomaxillary areas of the HS model and implied that these areas are similar
to the position of the former cortical bone with the higher stress registered. The cortical bone with
harder stiffness is the main skeleton structure, the adaptive position for screw anchors, and exhibited
the highest compressive stress during occlusal. The small stress and large volume variation between
the IFS and HS models indicated that many cancellous areas in the facial bone may not need to be
transmitted as strength and the structure achieves lightweight neutrality. This point implied that the
internal fixation implant contour design can follow the HS model skeleton position, i.e., nearly the
buttress pillars in the IFS model.

The maxillary and zygomatic bones received a bending moment under the loading condition in
our simulation. Principal stresses were selected more suitable as the stress index of failure for brittle
materials rather than von Mises stress. The simulated results clearly showed that the ZMC fracture
repair mechanical behavior with the PSRT implant designed according to the HS model skeleton was
similar to the IFS model regardless of the stress value and distribution in different positions. However,
the use of a traditional mini-plate showed unsatisfactory results. This phenomenon confirms the
hypothesis that we proposed the implant main structure or contour design that should be designed
according to the buttress position and orientation.

The results obtained in this study were only simulated under the condition of a uniform axial load
applied to the posterior teeth, because the chewing condition occurs clinically most often, it was applied
to simulate occlusal force. The structural optimization was obtained for explaining the buttress theory
under chewing forces. However, this could not represent the actual individual occlusion situations.
Well-controlled clinical/animal trials must be confirmed in a further study.

5. Conclusions

This study concluded that the topology optimization approach and FE analysis can be integrated
to understand the positions of buttress pillars in the mid-face and the main structure/contour design of
the ZMC repair implant needed to consider the buttress position and orientation to obtain a favorable
mechanical behavior.
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